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Abstract 

One of the most important issues in parallel processing is the mapping of workload 
to  processors. This paper considers a large class of problems having a high degree 
of potential fine grain& parallelism, and execution requirements that are either not 
predictable, or are too costly to  predict. The main issues in mapping buch prob- 
lems onto medium scale multiprocessors are those of aggregation and assignment. 'We 
study a method of parameterized aggregation that makes few assumptions about the 
workload. The mapping of aggregate units of work onto processors is uniform, and 
exploits locality of workload intensity to balance the unknown workload. In general, 
a finer aggregate granularity leads to a better balance at the price of increased com- 
munication/synchronization costs; the aggregation parameters can be adjusted to find 
a reasonable granularity. The effectiveness of this scheme is demonstrated on three 
model problems: an adaptive one-dimensional fluid dynamics problem using message 
passing, a sparse triangular linear system solver on both a shared memory and a 
message-passing machine, and a two-dimensional time-driven battlefield simulation 
employing message passing. Using the model problems we study the trade-offs be- 
tween balanced workload and the communication/synchronization costs. Finally, we 
use an analytic model to explain why the method balances workload, and minimizes 
the variance in system behavior. 

*This research was supported in part by the National Aeronautics and Space Administration under NASA 
contract NASI-16107 while the author was in residence at ICASE, Mail Stop 132C, NASA Langley Research 
Center, Hampton, VA 23665. 
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Figure 1: Irregular Grid for Two-Dimensional PDE 

1 Introduction 
We consider the broad class of computational problems that exhibit a high degree of 
potential fine-grained parallelism, and whose dynamic workload is either unpredictable or 
too costly to predict. In these problems, the computation is often easily decomposed into 
a sequence of phases, each phase being composed of a large number of operations which 
we will call grains. This paper treats the problems of aggregating sets of grains into work 
units, and mapping the work units onto a medium scale message-passing or shared memory 
multiprocessor. The machines used in these investigations were the Encore Multimax, the 
Flex/32, and the Intel iPSC hypercube. 

Within a phase, the aggregated granularity of work units can often be specified para- 
metrically, without specific regard for the execution requirements of the resulting work 
units. This is particularly easy when the computation is tied to a physical domain, like 
the numerical solution of a partial differential equation (PDE) using an explicit method 
of integration. A grain in this case can be the set of computations required to update 
a single grid point solution. We aggregate these grains by tessellating the domain with 
subregions of regular and equal size; Figure 1 shows how a two-dimensional irregular grid 
(intersection of solid lines define grid points) for a PDE is aggregated into rectangles (by 
the dotted lines). The work unit granularity is specified by the parameters defining a sub- 
region's shape and size. The execution requirement of such a subregion is the collection 
of all workload related to the physical region it covers, e.g. the workload of a region in 
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Figure 1 consists of all updates to grid points contained in that region. It shall be argued 
below that the principles discussed in this paper extend to a wide variety of numerical and 
non-numerical problems. 

Given a collection of work units we can attempt to balance the unknown workload 
during a phase by placing an equal number of work units on e,.ch processor. The likelihood 
of achieving a reasonable balance increases as the work unit size becomes smaller. But in 
medium scale multiprocessor environments (particularly message-passing environments), 
the assignment of fine grained computations in ways that balance load may incur high 
communication costs due both to higher communication volume, and a higher number of 
communication startups. We therefore observe a trade-off between load imbalance and 
communication overhead, but can control that trade-off with the aggregate granularity 
parameters. 

In many situations, aggregation may be performed in a way that leads to an inverse 
relationship between work unit size and ihe number of phases required to complete a 
problem. If we perform synchronizations between phases, we note a tradeoff between load 
imbalance and synchronization costs. 

We demonstrate simple parametric aggregation techniques that are applicable for a 
variety of physically-based problems. We then describe a straightforward means of indexing 
the work units so that their computational requirements exhibit a degree of locality, i.e., 
their computational requirements become more highly correlated as the difference in the 
indices of the work units becomes smaller. Under this mapping the communication that 
must take place between work units is predominantly Lctween nearby work units. 

The indexed work units may be assigned to processors in a number of ways. The 
method we shall explore in this paper is that of .wrapping. In its simplest version one 
numbers -the processors from 0 to P - 1, and labels work units with indices from 0 to 
n - 1. Work unit j is assigned to processor j mod P. One can also generalize wrapping 
to apply to a (possibly logically defined) multiclimensional processor array. We assume 
that processors are assigned indices (il,iz,..,id) where 0 5 ik 5 Pk - 1, and work units 
are assigned indices ( j l ,  j,, .., j d ) .  Work uni t ( j l ,  ..., j d )  is assigned to processor ( j l  mod 
Pl, ..., j ,  mod Pd). Figure 2 illustrates a wrapped assignmen: of a 6 x 12 work unit array 
onto a 3 x 4 array of processors. 

This work is part of the ongoing Crystal/ACRE [26] parallel programming environ- 
ment development effort. We aim to develop simple sets of techniques that can be used 
€or the automated mapping and dynamic remapping of a variety of problems onto both 
very tightly coupled systems, and onto loosely coupled systems. Parameterized aggrega- 
tion and assignment is very promising for our purposes, in that it offers an automated 
mapping (and/or remapping) system a reasonably sized space of easily determined niap- 
pings to choose from; as we will see, some of these niappings are better suited for tightly 
coupled systems, and others for loosely couplcd systems. The load balancing properties of 
the kind of aggregation and mapping studied here have been briefly discussed in [5 ] .  We 
extend that work in a number of ways; we explore in some detail the use of aggregation 
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Figure 2: Wrapped Assignment of PDE Domain 

in dynamic problems, extend methods of parameterized aggregation to problems without 
a physically obvious time direction, and develop a statistical model to describe the per- 
formance implications of parameterized aggregation and of wrapped mappings. In a more 
general context, wrapped assignments have been used for a wide variety of problems in 
parallel processing, a few examples include [ll], [23], [6], [27]. 

We examine three model problems to illustrate how work unit granularity can be spec- 
ified parametrically, and how the resulting work units are subsequently mapped by wrap- 
ping. We study the problems’ measured performance to illustrate how the granularity pa- 
rameters affect the load imbalance/overhead tradeoffs. One problem is a one-dimensional 
adaptive fluid dynamics computation. The computation uses an explicit numerical method 
to solve a time-dependent partial differential equation with respect to time. Each phase 
or t i i i i e  step of the computation advances “time” by some At; within a phase, a number 
of indc1)endent calculations are required at each of the discretized domain’s grid points. 
Parameterized aggregation is accomplished by dividing the domain into a number of subin- 
tervals having equal leiigtli (subinterval length being the parameter). At any given time 
step, a work unit consists of all computations associated with grid points within a subinter- 
val. The workload distribution changes in time as the adaptive regridding adds and deletes 
grid points from the domain. The regions where new grid points will appear are gener- 
ally unpredictalh, so that the future workload behavior is unpredictable. This problem 
computation is implemented on the Flex/32 multicomputer [ 141 using a message-passing 
paradigm. 
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The second model problem is the solution of a sparse triangular linear system of equa- 
tions arising from the incomplete factorization of a matrix obtained from the discretization 
of a partial differential equation. In this problem, there is no physically meaningful choice 
of a ”time” axis; in the course of solving the problem a time axis will be chosen. In this 
problem, the way in which work units are chosen will effect the number of phases required 
to complete the problem. 

In the process of performing the preconditioned conjugate gradient algorithm [3], [lo], 
numerous solutions of sparse triangular systems must be obtained. The aggregation pa- 
rameters for this problem are obtained from an analysis of a directed acyclic graph specified 
by the lower triangular matrix to be solved. These parameters turn out to be intimately 
related to the discretized physical domain of the PDE; they implicitly specify the sub- 
regions of domain that are to be treated as work units. A work unit is thus defined by 
the computations related to a region, and a phase is the collection of work units that can 
be concurrently evaluated. Unlike the fluid dynamics problem, this problem’s behavior 
as a function of phase could in theory be completely analyzed before actually solving the 
system. The analysis required, along with the computation of the mapping or schedule 
to be used during each phase can be quite expensive. It can be preferable not to perform 
the analysis, and specify a simple wrapped mapping which makes the appropriate tradeoff 
between load balance and communication and/or synchronization overheads. This compu- 
tation is implemented using a shared memory paradigm on the Encore multicomputer [4], 
and using a message-passing paradigm on the Intel iPSC hypercube multiprocessor [21]. 

The third model problem is a time-driven battlefield simulation based on CORBAN 
[SI. Each phase or time step in the simulation consists of performing all simulation work 
required in the next At amount of simulation time. At a time step we view the simulation 
as a collection of independent computational activities distributed over a two-dimensional 
geographical domain. Like the fluids problem, the aggregation parameters specify the size 
of regions that cover the domain. At a given step, a work unit is defined by all of the sim- 
ulation activity required within a domain region. Simulation activity is bound to combat 
units that move through the domain. Computational activity is particularly intense when 
units from opposing sides become geographically close, causing the simulation of a battle. 
The future geographical position of units is unpredictable (or too costly to compute), so 
that we must treat the future distribution of workload as unknown. The battlefield simula- 
tion has also been implemented on the Flex/32 using a message-passing paradigm. There 
are numerous other examples of problems displaying many of the characteristics of these 
model problems; these examples include iterative relaxation solutions of partial differential 
equations and simulations of other physical processes in a spatial domain, e.g. gate-level 
or transistor level VLSI circuit simulation. 

One obvious alternative to wrapping is to systematically schedule workload to proces- 
sors during each phase of the computation so as to maintain a good load balance. The 
difficulties with this approach include the need to frequently estimate the computational 
requirements of each work unit, and the additional cost of the scheduling algorithm. On a 
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message-passing machine therc may also be a significant cost for these workload reassign- 
ments. In some cases where the computational requirements of work units change fairly 
gradually from phase to phase of a computation, one may dynamically remap the work- 
load as the computation evolves; each mapping is then based on the known distribution 
of the workload at the time of the mapping. A host of issues raised by dynamic remap- 
ping (particularly when to remap) have been discussed elsewhere [17],[18],[25]; even so, it 
is important to choose mappings which are effective during their period of use. This is 
especially true if the cost of remapping is very high, so that remapping is infrequent. 

The main purpose of this paper is to point out principles for workload aggregation 
and assignment that appear to apply to a wide range of dynamic computational problems. 
We show how a simple set of parameters effectively controls performance, and note that 
performance depends strongly on the parameter choice. The principles we espouse form 
the basis of an automated aggregation and assignment system [26] under development; 
they also underlie a mechanism for run-time remapping of parallel computations [19]. In 
Section 2 we discuss workload aggregation and assignment in a general way. Sections 3,4, 
and 5 make these principles more concrete by applying them to three diverse problems. 
The implementation and performance of these problems on various parallel processors are 
discussed. The data we present clearly shows the trade-off between load balance and 
overhead due to fine-grained aggregation. Finally, in Section 6 we use a general stochastic 
model to formally explain wrapping’s ability to balance load. This model shows that among 
all mappings of uniform partitions, wrapping minimizes the variance in processors’ loads. 
We explain why minimization of variance is a desirable property for load balancing. We also 
show that under wrapping, a processor’s variance decreases rapidly as the work unit size 
decreases, and we give empirical evidence that extensive (but not complete) aggregation 
still significantly improves load balancing. 

2 Workload Aggregation and Assignment 
Before examining the model problems in detail, we use this section to discuss aggregation 
and assignment in a general way. A major principle we espouse is the parametric aggre- 
gation of fine-grained workload (grains) without specific concern for their execution costs. 
This principle makes sense when either (i) we cannot or should not attempt to estimate 
the grains’ execution costs, (ii) the execution costs are liable to change unpredictably as 
tlie computation progresses, or (iii) we expect the grains’ execution costs to be roughly 
the same. The details of the aggregation method should depend in a general way on the 
computation, a fact we illustrate by example. We then describe how the aggregated work 
units are wrapped. 

Consider a computation based on a one dimensional domain [0, L]  such that the update 
computation for a value at position p at step s depends only on values at points near p at 
step s - 1 (e.g. our model fluids problem). While the computation considers a discretized 
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version of the interval, our aggregation method will view it as being continuous. To 
uniformly aggregate the workload on [O,L] into n work units, we simply define the n 
work units [0, L /n] ,  ( L / n ,  2L/n],  . . . , ( ( n  - l ) L / n ,  L] .  n controls the degree to which we 
aggregate the underlying grains. During a given phase, a work unit’s computational load 
is the collection of all grid point updates for grid points lying in the region’s physical 
interval. During a given phase, all of the work for one work unit can be performed in 
parallel with the work for another unit (provided that the results from the previous step 
have been locally disseminated). Note that this type of aggregation is independent of the 
way in which workload is distributed. 

The partitioning used for the one-dimensional case above extends easily in certain cases 
to a two-dimensional problem, like the battlefield simulation model problem. The domain 
is viewed as the set of all (x, y), x E [0, W ] ,  y E [O, HI for some positive W and H .  We 
aggrcgatc into h . IO rect,angula.r work units, each having height H / h  and width W/w. Any 
computational work associated with a point (5, y)  is performed by the processor holding the 
work unit containing (x,y).  This type of aggregation is appropriate if every work unit’s 
computation can occur concurrently with any other’s during a phase. The parameters 
h and w control the granularity of the aggregation; note again the independence of the 
method from the workload distribution. This method clearly extends to domains with 
higher dimensions. 

Given a 
choice of computational grain it is still straightforward to partition the computation into a 
sequence of phases, each phase consisting of completely independent computational grains. 
Grains within a phase can then be clustered into work units. We next illustrate a more 
sophisticated kind of clustering that changes the number and the composition of phases. 
It should be noted that this method’s principles (described in the context of the sparse 
triangular solve below) can also be applied to  problems involving a physical t ime  azis, 
including the other model problems described here. 

Our second model problem arises from a discretized two dimensional domain but in 
this case there are data dependency relations between variables corresponding to different 
mesh points. We use conjugate gradient type methods that employ the effective Incom- 
plete LU form of preconditioning [3] for solving systems of linear equations arising from 
discretizations of two dimensional elliptic partial differential equations. In this algorithm, 
an incomplete factorization of the matrix arising from the discretized domain is carried 
out; in the simplest case the sparsity structure of the upper or lower triangular matrix 
arising from this incomplete factorization is identical to that of the upper or lower trian- 
gular portion of the original matrix describing the domain. We shall limit our discussion 
here to this simplest case of zero fiZZ incomplete factorization. 

Preconditioned conjugate gradient algorithms are iterative; one repeatedly performs 
matrix vector multiplications, inner products and solutions of the upper and lower tri- 
angular systems obtained from the incomplete factorization described above. The data 
dependencies in the problem make efficient solution of the triangular system particularly 

In many algorithms, no physically meaningful time direction is available. 
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challenging. Furthermore, the ability to solve the system efficiently is an essential com- 
ponent of a high performance algorithm, since the triangular system must be repeatedly 
solved. 

A grain for this problem is taken to be the work associated with solving for a single 
variable, Since the matrices generated from most discretizations of partial differential 
equations are quite sparse, there will typically be just a few floating point operations 
associated the solution of each variable. 

The data dependencies inherent in the solution of a triangular system of equations 
of the type we consider can be described with a directed acyclic graph. This graph has 
a close relationship to the undirected graph describing the mesh, and plays a key role 
in the aggregation process. For the sake of specificity we will consider the solution of 
the h e r  triangular matrix obtained from the incomplete LU factorization. The directed 
acyclic data dependency graph contains the same links as did the undirected graph. The 
matrix describing the original mesh contains a row for every mesh point, the row’s nonzero 
elements describe the point’s dependencies on other mesh points. Consequently this matrix 
is dependent on the order (indices) given to the mesh points, as are the triangular matrices 
obtained from incomplete factoring. For a given ordering of mesh points, the links of 
the directed graph originate from the variables assigned lower indices and end in those 
assigned higher indices. To illustrate these relationships, consider a rectangular mesh with 
a five point template in Figure 3(a). The matrix M obtained from this mesh has a non- 
zero structure shown in Figure 3(b) (* denotes a non-zero element). The zero fill lower 
triangular factor L is shown in Figure 3(c), and the directed graph that describes the data 
dependencies encounted in solving the equations Lx = b is depicted in Figure 3(d). 

We hence have a directed acyclic graph (DAG) imposed on the mesh where the point 
index of a link’s head is larger than its tail coordinate. The value at a point may be com- 
puted once the values at all of its ancestors in the DAG have been computed. Partitioning 
is achieved by coalescing points into rectangular work units, as shown in Figure 3(e). 

Taking the data dependencies between grains into account allows one to identify an 
ordered sequence of sets of work units; the work units belonging to each set can be evaluated 
in parallel. The evaluation of each set of work units may be viewed as a step in a multi-step 
parallel computation where global synchronization occurs between steps. The computation 
associated with a point can vary depending on the number of precedence arcs into the point. 
The work units within a wavefront can be viewed as a one-dimensional array. Like the work 
units of the previous examples, the work unit here is a basic element of schedulable work, 
with potelltially variant workload. The height and width of a work unit are parameters 
controlling the granularity of the aggregation. 

The three preceding methods illustrate parameterized aggregation. For each method 
we can view the work units during a phase as having d-dimensional indices (jl,j2, . . , j d )  

where d depends on the aggregation method (d  is 1 or 2 for the methods presented). For 
t,he purpose of assignment we suppose that the available processors can be labeled with d- 
dimensional indices (il, i2, .., id) where 0 5 ik 5 Pk - 1. The wrapping assignment consists 
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simply of assigning work unit (h, ..., jd) to processor (jl mod Pl, ...,j, mod Pd). In the 
following three sections we illustrate how aggregation and wrapping is applied to three 
diverse problems. 

3 Fluids Problem 
We first apply the principles of aggregation and assignment to a problem in fluid dynam- 
ics. This section describes the problem, reports the achieved performance on the Flex/32 
multicomputer, and comments on the trade-offs between load imbalance and communica- 
tion/synchronization overhead. 

A one-dimensional fluid dynamics code serves as our &st model problem. The code 
numerically simulates the density p(r, t )  and velocity v(r,t) of a compressible fluid flowing 
through a tube, as a function of position r and time t. Our implementation employs the 
ETBFCT code [2] that solves the general continuity equation 

where Cl, D1, D2,03 are problem dependent constants or functions. For the sake of sim- 
plicity, all of our experiments set these functions equal to zero, and use the equation of 
state v ( r , t )  = p(r , t ) / 2  (which makes this Berger's equation). The one dimensional tube 
model is represented by a grid having one point every h spatial units; we will call this the 
coarse grid. We assume that the value of p is known at every grid point at time t = 0, 
that the fluid flows from left to right, and that the density and velocity values of fluid 
entering the tube are given as needed. Presented with the fluid density and velocity values 
throughout the domain at time t o  and the density and velocity of fluid entering the tube 
at time t o  + At, ETBFCT numerically integrates the continuity equation in t to solve for 
fluid behavior at time to + At. ETBFCT has second-order accuracy. 

Variant computational behavior is caused by employing an adaptive gridding technique 
proposed in [l]. Every 5At time units the solution behavior is examined, and additional 
j n e  grid points with a spacing of h/6 are added in subregions where the examination 
predicts that truncation error will exceed a user defined limit (the mechanism employed in 
[l] is quite detailed and is beyond the scope of this paper). Every coarse grid point in such 
a region has a corresponding fine grid point at exactly the same tube position. Similarly, 
fine grid points are removed from regions where they are no longer needed (coarse grid 
points are never removed). Figure 4 illustrates how patches of grid points might be applied 
to the domain. At time to, the computation first integrates only the coarse grid, from time 
to to time to + At. Then, each fine grid is integrated 6 times where each integration uses 
a time step of At/6; boundary values at the ends of subgrids are interpolated from the 
corresponding coarse grid values. After fully integrating the fine grids, function values at 
coarse grid points covered by fine grid points are replaced with the improved function values 
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Figure 4 Dynamic Regridding of One Dimensional Domain 

from the corresponding h e  grid points. In its fullest generality, the method described in 
[l] allows a recursive attachment of finer grids to fine grids. 

The behavior of the physical fluid system is governed by boundary conditions,  or the 
behavior of fluid entering the system; the continuity equation above allows the introduction 
of fluid at any point in the domain. Fine subgrids tend to appear in regions containing sharp 
gradients in the fluid density. Gradients can be introduced by the boundary conditions, 
and can also form of their own accord. During the course of the computation, future 
regridding gctivity can be unpredictable because the future behavior of the boundaries 
can be unpredictable or too complex to effectively pre-analyze. More importantly, it is 
unpredictable because the only way to determine what the fine grid distribution at time 
t will be is to simulate the system up to time t. Despite the unpredictability, there is 
positive correlation in workload density in time and space. If domain points ri and rj are 
spatially close and if a fine grid covers point ri at time to, then it is likely that the fine 
grid covers rj at time t o ,  and covers both points at time to + At. A wrapped fine-grained 
aggregation will increase the chance that points r; and rj (and the subgrids covering them) 
are balanced by residing in different processors. 

Two factors dominate the execution time of a parallel implementation of our fluids code: 
communication cost and computation cost. Using ETBFCT the density at position ro at 
time to + At depends functionally on the density values for all grid points between ro - 5h 
and q, + 5h  at time t o  (approximately 50 floating point operations are used to update the 
density at a coarse grid point). This dependence requires inter-processor communication 
for points that are functionally dependent but reside on different processors. Figure 5 shows 
aggregation leading to exactly as many work units as there are processors. If processor 
j is assigned a partition containing points [ro, . . . , ro + M h ] ,  then processor j must send 
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points [ro, .  . . , ro + 4h] to processor j - 1, and will receive points [ro - 6h,. . . , r0 - h] 
from processor j - 1. A similar exchange with the partition’s right boundary points is 
uiidcrt;ll<cn with processor j + 1. This mapping minimizes the average volume of data 
that must be communicated between processors. It is clear though that this aggregation 
inadequately balances the load. Figure 6 illustrates the same situation with less extensive 
aggregation and shows that the load balance is significantly better. On the other hand, 
the smaller work units require more inter-processor communication due to the increased 
number of partition interfaces. In fact, this degree of aggregation requires proportionally 
more computation because of a fixed additional computation cost associated with every 
partition, regardless of size. The optimal degree of aggregation must somehow balance the 
benefits and costs of wrapping. 

Before describing the performance of our method on the Flex/32 [14], we briefly describe 
its architecture. The Flex/32 at NASA Langley Research Center has twenty NS32032 based 
processors. Two of the processors are used as hosts and as general purpose UNIX machines; 
the remaining eighteen processors are used for parallel processing. Each processor has 
approximately 1M bytes of local memory; there is a global memory with approximately 
2.25M bytes. Our implementation of the fluids code uses the shared memory only as 
medium through which messages are passed. Even in a message-passing machine much of 
the cost of communication lies not in electronic transmission time, but in message packing, 
unpacking, and general system overhead. Consequently, the performance of our code on 
the Flex/32 should be reflective of message-passing machines with fast communication 
channels, relatively small packet sizes, but not necessarily fast operating system support. 

The trade-off between load balance and communication overhead is apparent from the 
following experiment. The coarse grid is composed of 512 points, and eight processors are 
used (using more processors did not significantly improve performance for this size of coarse 
grid). The initial fluid density is constant throughout the domain; dynamic regridding is 
caused by the injection of a wave at the left end of the domain. The computation is run 
for two hundred time steps. The domain was alternately divided into 64, 47, 32, 16, and 
8 (approximately) equal length subintervals which were wrapped. The uniformity of the 
coarse grid ensures that each subinterval contains the same number of coarse grid points 
(with the possible exception of the rightmost subinterval). Figure 7 shows the running 
time in seconds plotted as a function of the number of coarse grid points in a subinterval. 
Technical reasons require that at  least eight points be aggregated into a work unit. The 
optimal performance is achieved when a work unit covers sixteen coarse grid points. The 
speedup at the optimal point was 5.1. Thus we see that the tradeoffs have a significant 
impact on performance, and that neither the least extensive nor most extensive degree of 
aggregation achieve the best performance. Somewhat better speedups have been achieved 
on this problem by dynamically changing the extent of aggregation between time-steps 
~ 7 1 .  
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4 Triangular Solve 
Our second model problem considers the solution of a class of linear equations arising 
from the use of a style of pre-conditioned conjugate gradient algorithms. Our methods 
are implemented using a shared-memory paradigm on the Encore Multimax [4]; we also 
implemented our method using message-passing on the Intel iPSC (211 . Again we observe 
trade-offs between load balancing and communication/synchronization overhead, and note 
the dependence of those trade-offs on the architecture used. 

4.1 Problem Partitioning 
4.1.1 Overview 

In the simplest form of incomplete LU preconditioning, the factors L and U (where A = 
LU) have the same sparsity structure as the lower and upper portions of A respectively [lo]. 
Intuitively this means that if the solution for variable xj in the equation Ax = b depends 
on the solutions for all variables in a set S, then the solution for xj in Lx = b depends only 
on the solutions for variables in S with indices smaller than j .  A prior knowledge of the 
sparsity structure is used when generating the problem mapping in the example to follow. 
Prior knowledge is not needed when a matrix oriented version of the problem mapping is 
used [24]. 

As discussed in Section 2, the data dependencies involved in solving the triangular 
incompletely factored matrix for a given mesh may be represented by a directed acyclic 
graph. This DAG is sinlply a directed version of an undirected graph on the problem 
mesh. Figure 8(a) depicts the directed acyclic graph describing the data dependency 
relations between variables to be solved for in a problem arising from an L-shaped mesh. 
The direction of the links in the DAG depends on the ordering of the variables; here we 
assume that variables are ordered from left to right beginning with the bottom row of mesh 

, 
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Figure 8: Aggregation and Assignment of Problem Arising from an L-Shaped Mesh 
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points. 
The points in the DAG can be separated into disjoint wavefronts using a topological 

sort. Sets of points sharing no data dependencies are peeled from the graph, these wave- 
fronts are assigned consecutive numbers (Figure 8(b)). All points in any given wavefront 
can be solved for simultaneously; a point in wavefront i requires data only from wavefronts 
j < i. 

We now briefly describe how the parameterized aggregation hinted at in Section 2 is 
carried out. We assign consecutive rows of the mesh to row b l o c h  and assign these blocks 
to processors in a wrapped manner. Figure 8(c) illustrates a wrapped assignment of row 
blocks to processors. Because of the block dimensions, this assignment wraps two consec- 
utive mesh rows per processor (as shown, this does not imply that a processor receives 
only two rows). We also solve for the variables corresponding to two wavefronts in the 
blocks containing the first mesh row during each phase. Note that the data dependencies 
depicted in Figure 8(c) allow one processor to perform as much work as is desired from 
the first mesh row, since no point in the row depends on data from any other row. For 
points in other mesh rows, we perform as much work as is allowed by the data dependency 
relations. Note that during each phase of the computation, we assume the availability of 
any information produced during a previous phase. 

As shown above, we may aggregate work using two parameters-the block size, or num- 
ber of mesh rows per row block, and the window size, or number of wavefronts per block.' 
The selection of these parameters gives rise to block wavefronts, which can be viewed as 
phases of the problem. This selection affects the number of phases required to solve the 
problem. Note that the assignment illustrated in Figure 8(b) leads to 16 phases, while 
that in Figure 8(c), leads to only 7 phases. As shown in [24], the choice of window size de- 
termines the number of phases in the problem. In message-passing machines reducing the 
number of phases reduces the number of communication startups throughout the problem. 
In machines that efficiently support shared memory, a reduction in phases reduces synchro- 
nization costs. Increasing the block size also reduces communication between processors in 
machines utilizing fast local memory. As observed with the fluids problem, the reduction 
in overhead achieved with extensive aggregation comes at the risk of load imbalance. 

We emphasize that the distribution of work during a given phase depends on both the 
shape of the domain and the data dependency relations between mesh points. Table 1 
shows the number of floating point adds and multiplies each block in Figure 8(c) must 
perform during each phase. A detailed analysis of the principles involved in the generation 
of parameterized mappings such as those described above, along with performance analyses 
is found in [24]. 

'Rigorously, the number of wavefronts per block in blocks containing the first mesh row. 
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4.2 Experimental Results 
4.2.1 Preliminaries 

The figures discussed in the current section depict timing measurements made during a 
forward substitution computation. The matrix utilized was generated through the zero fill 
incomplete factorization of a square mesh employing a 5-point template, and an L shaped 
mesh which employed both 5-point and 9-point templates. 

The machines used for this investigation were the Encore Multimax [4] and the Intel 
iPSC hypercube multiprocessors [21]. The Intel iPSC multiprocessor is a 80286 based 
multiprocessor with a hypercube interconnection network linking the nodes. The iPSC 
used in this investigation has 32 processors, each of which has 4.5 megabytes memory. 

The Encore Multimax is a bus based shared memory machine that utilizes 10 MHz 
NS32032 processors and NS32081 floating point coprocessors. All tests reported were 
performed on a configuration with 18 processors and 16 Mbytes memory at times when 
the only active processes were due to the authors and to the operating system. On the 
Encore the user has no direct control over processor allocation. Tests were performed 
by spawning a fixed number of processes and keeping the processes in existence for the 
length of each computation. This programming methodology is further described in [12]. 
The processes spawned are scheduled by the operating system; throughout the following 
discussions we make the tacit assumption that there is a processor available at all times 
to execute each process. In order to reduce the effect of system overhead on our timings, 
tests were performed using no more than 14 processes; this left four processors available 
to handle the intermittent resource demands presented by processes generated by the 
operating system. 

We present data from the Encore Multimax and the Intel iPSC that elucidates the 
effects of aggregation on multiprocessor performance. We first examine the execution time 
obtained using 14 processors from the forward solve of the zero fill factorization on a 
discretizcd L shaped region similar to that depicted in figure 8. A 100 by 20 point base is 
discretized using a 5 point template, on top of this lies a 80 by 80 point mesh discretized 
using a 9 point template. We aggregate using a window size equal to the block size, and 
display the execution times measured on the Multimax. 
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Figure 9: Effects of Window Size on Execution Time: Multimax 

Note that the matrix obtained from this mesh is extremely sparse; there are no more 
than four non-zero off diagonal elements in any matrix row. The parallelism encountered 
here is consequently quite fine grained. This matrix, along with the others described here, 
has unit diagonal elements, so that the forward solve does not involve divisions. 

Barrier (or global) synchronization between phases was utilized. When timed sepa- 
rately, this synchronization was found to require 46 microseconds; this compares to ap- 
proximately 10.8 microseconds required for a single precision floating point multiply and 
add. It is not clear that future architectures utilizing much faster processors and more gen- 
eral interconnection networks will allow for synchronization costs that are as small relative 
to the costs of floating point computation. We consequently explored the performance ef- 
fects of aggregation when either one, ten or twenty barriers were used for synchronization. 
In Figure 9 we see that the computation time as a function of aggregation is nearly convex 
and that the minimum time, as expected, occurs with greater degrees of aggregation as 
the cost of synchronization increases. The time required by a separate sequential program 
was 951.76 ms, consequently the optimum speedup was 9.49, 5.95 and 4.47 when one, ten 
and twenty barriers were used. We note also that the optimum performance is observed 
for increasingly aggregated problems as the cost of synchronization increases. Note also 
that performance is strongly determined by the choice of window size. 

It is possible to symbolically estimate the optimal speedup in the absence of synchro- 
nization delays, given the assignment of work to processors characterizing a particular 
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Figure 10: Effects of Window Size on Execution Time: iPSC 

window and block size. For each window size, the time required for a separate sequential 
code to solve the problem was divided by the estimated optimal speedup. This yields the 
amount of time that would be required to solve the problem in the absence of any sources of 
inefficiency other than load imbalance. The results of these calculations are also plotted in 
Figure 9 where they are denoted as the symbolically estimated optimal computation time 
[24]. Note that the symbolically estimated optimal computation time increases with win- 
dow size, as increases in granularity limit the available parallelism. The difference between 
the observed and estimated optimal times decreases with window size. Fewer phases are re- 
quired to coniplete the computation and consequently the cost of synchronization becomes 
negligible. 

While the plot in Figure 9 suggests convexity, distinctly non-convex performance curves 
are obtained by fixing the block size, and varying the window size. See [24] for a more 
extensive discussion of the this type of problem performance on the Multimax. 

This type of forward solve problem was also implemented on an Intel iPSC. The iPSC 
version employed sixteen processors on a 160 x 160 point domain, discretized using a 5- 
point stencil. Figure 10 plots a roughly decreasing execution time as a function of degree 
of aggregation. 

The window size was equal to the block size, and both were varied between one and 
t,welve. The tirnf. required to perform a separate sequential calculation on one node of 
the iPSC was 7.195 seconds , the best speedup was consequently 6.381. Little further 
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advantage was noted when 32 processors were utilized. We note that the execution time 
tends to decrease as a function of increased aggregation. The local maxima at window sizes 
two and eight are non-intuitive, and were investigated further. While we have not found 
a completely satisfactory explanation for these enigma, it does appear that they are an 
operating system response to irregular and asynchronous message traffic. The iPSC has 
communication costs that are quite high, and consequently reducing the number of phases 
required to solve the problem has (generally) a very significant payoff. Once again we note 
the strong dependence of performance on aggregated work unit size. 

We also depict the symbolically estimated optimal computation time in figure 10; ob- 
serve that this increases with window size. While we were unable to obtain results from 
the parallel code for window sizes of greater than 12, it is clear that the execution time will 
increase with greater degrees of aggregation due to the reduction in available parallelism. 

5 Battlefield Simulation 
Unlike our first two model problems, the third is not specifically numerical. We consider a 
distributed battlefield simulation which was developed for the purpose of studying issues in 
the parallel processing of time-driven non-numerical simulations. The simulation is based 
on Zipscreen [7,9] which was developed by the BDM Corporation; in turn, Zipscreen is 
a simplified version of the CORBAN [8] simulation. Both Zipscreen and CORBAN view 
a battlefield as a two dimensional domain tessellated by hexagons. Combat units from 
opposing sides move through this domain. Zipscreen focuses on the perception, combat, 
and movement  activities found in CORBAN at every time step. The perception activity is 
performed by every unit, and consists of creating a list of all enemy units on its own hex, 
and on adjacent hexes. The unit enters combat with units found on this list, calculates 
losses that it inflicts on enemy units, and reports those losses to the afflicted units. At  the 
end of a time step, every unit moves, possibly changing hex locations. 

A two-dimensional domain tessellated by hexagons can be viewed as a “rectangular” 
array of hexagons. This is seen in Figure 11 where the “rows” are clearly defined while 
the hexes in a “column)’ zig-zag vertically. As before, we will aggregate elemental units of 
the domain-the hexes. Aggregation consists of covering the domain with blocks each w 
hexes wide and h hexes tall (with the possibility of some deviation from these dimensions 
at the edges of the domain). These blocks themselves form a rectangular array that we 
index by “block row’) and “block column”. To assign the blocks using wrapping we view 
the processors as forming a r by c rectangular array of processors. Then, block ( I C ,  m) and 
all the hexes it contains is assigned to processor ( I C  mod T,  rn mod c ) .  

It is not difficult to see that like the other two model problems, workload intensity is 
positively correlated in space. Computational activity is most intense where battles occur. 
Only units which lie on the same or adjacent hexes may battle each other. Furthermore, 
battles (and hence battlefield simulations) tend to be localized in space. The knowledge 
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Figure 11: Rectangular Partitioning of Hexagon Domain 

that a particular hex contains an engaged unit makes it likely that the hex lies in a region 
where the main battle-lines are drawn. It is interesting to note that even in this problem, 
the workload lies largely in one dimension-the battle-line. 

The choice of h and w has a significant impact on the volume of inter-processor commu- 
nication. All units lying on the border of a block must perceive any unit lying on adjacent 
hexes in another processor, must report any losses it inflicts on such units to another pro- 
cessor, and potentially moves from one processor to another. Decreasing either h or w 
increases the total number of hexes that lie on such boundaries, and increases the average 
volume of communication. On the other hand, decreasing h and w improves load balance, 
so once again we have the load balance/overhead trade-offs controlled by the aggregation 
psi smeters. 

Once again the global memory was used only to support message-passing. The results of 
the experiment reported below are representative of many performed on the Flex/32. We 
place 1000 units, 500 to a side, on a 32 x 32 hex domain. Sixteen processors are used. The 
initial placement separates the two sides with a diagonal line; all units are initially within 
a few hex's of the diagonal. Within these parameters the units are placed randomly. A 
unit has one direction of movement (six directions corresponding to the six hex sides are 
possiblc). Most units are randomly directed to move in a direction towards the opposing 
sidc (three directions possible); movement speeds are set so that a unit remains on a hex 

Zipscreen is implemented on NASA Langley's Flex/32 using a message-passing paradigm. 
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Figure 12: Battlefield Simulation Performance 

for approximately five time-steps. A small fraction of the units are directed to remain 
stationary. The simulation runs for fifty time-steps. Units which vector off of the domain 
simply disappear. Heavy combat simulation occurs in the early time-steps, when the op- 
posing sides engage. Computational costs dominate the run-time in this period. During 
later time-steps the two sides have largely passed through each other, and combat is lim- 
ited to skirmishes between stationary units of one side, and moving units of the opposing 
side. The run-time of this latter period is dominated by communication. This scenerio 
is intended more to test the mapping during different types of problem behavior than it 
is intended to reflect actual battlefield simulations. More realistic battlefield simulations 
require a more intelligent movement mechanism than that found in Zipscreen. Further 
details concerning these experiments are reported in [15,16]. 

Figure 12 graphs performance of a simulation on a 32 x 32 hex domain, using sixteen 
processors. The execution time (in minutes) is plotted as a function of aggregated hex size 
assuming that the aggregated blocks are square with sides 1,2,3,4, and 8 hexes in length. 
Like the other model problems, the tradeoffs between load balance and communication are 
quite clear. Speedups using sixteen processors tend to be about 8; speedups using eight 
processors tend to be about 5.5. We expect that larger problems would improve the sixteen 
processor speedups, but memory constraints keep us from verifying this. These speedups 
are actually quite reasonable considering that the mapping is static, and the workload is 
highly variable. In fact, we will later discuss measurements indicating that the load is 
fairly well balanced; our speedup measurements reflect the fact that a significant amount 
of time is spent in inter-processor communication. 
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6 Analytic Model 
Each of our model problems have workloads that at a given phase can be viewed as one- 
dimensional. We will develop a one-dimensional analytic model which formalizes some of 
our intuition about wrapping and its affects on performance. Specifically, we give stochas- 
tic arguments showing that among a class of “balanced” mappings, wrapping minimizes 
the variance of a processor’s workload. The implications of this result are (i) that de- 
creasing the work unit size better balances a workload, and (ii) that among all mapping 
strategies, wrapping offers some useful analytic properties. Then we look at the effects on 
processor variance/covariance achieved by decreasing the extent of aggregation (or equiva- 
lently, increasing the number of work units). The model predicts that inter-processor load 
correlation approaches unity in the square of the number of work units. While we have 
not established a general analytic relationship between load correlation and load balance 
under wrapping, we do give heuristic arguments and discuss some limited analytic and 
empirical results concerning this relationship. 

Performance curves of the type seen in figures 7, 9, 10, and 12 can be viewed as the 
sum of an execution cost curve with a communication/synchronization cost curve. The 
latter curve is quite dependent on the architecture, while the qualitative effects of load im- 
balance are largely machine independent (provided that the processors are homogeneous). 
The analysis in this section concerns only the execution cost curve, and factors which 
affect it. By coming to understand how load balance in isolation is affected by the aggre- 
gation decision, we are better able to understand the tension between load imbalance and 
communication/synchronization overheads. 

6.1 Model Preliminaries 
Consider the behavior of a computation on a real line interval during one phase; without 
loss of generality we assume that the computation is performed on [0,1]. While an actual 
computation will discretize this interval, for the sake of modeling ease we will assume that 
every point p E [0,1] has a certain work intensity associated with it. Furthermore, we 
siippose that the computation advances in time (or phases), and that the work intensity 
at, poilit y depends on “time”. Recall that all of our model problems exhibit a sense of 
time. Let W t ( p )  denote the execution intensity associated with computation at point p ,  
at time t .  To determine the execution time required by the computation over the region 
[u,b]  at time t we simply integrate Wt(p) from p = a to p = b. We assume that the 
intensities W t ( p )  are unknown, but we are willing to model our uncertainity by assuming 
t l i n t  FV&) is a random variable, and that W&) can be viewed as a second order stationary 
1)Locess [22] over p E [0,1]. Thus we suppose that E[W,(p)] = p ( t )  for all p E [0,1], that 
m~-[Fi~~(p)]  = d ( t )  for all p E [0,1], and that Cov[Wt(p), Wt(q)] depends only on Ip - qI. 
These assumptions are reasonable if we &re unwilling or unable to differentiate between the 
likely behavior of the computation at p and at q. We do not assume that W&) = W,(q), 
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we simply assume that we have the same degree of uncertainity about W2(p) and W2(q). 
The relationship between the work intensity at point p ,  and the intensity at a nearby 

point q is of considerable interest. It makes intuitive sense that these intensities for nearby 
points be positively correlated-positive correlation is a way of modeling spatial locality 
in workload intensity. Furthermore, it seems intuitive that the strength of the correlation 
should diminish with the distance between p and q .  Figure 13(a) shows the measured 
autocorrelation function [20] at one time-step in the fluids model problem (function values 
for large distances are not shown, but the trend shown in the figure continues). The 
autocorrelation a(d) function for a second order stationary process is a statistical estimate 
of correlation in points d units distant from each other. Not only do we observe diminishing 
correlation as a function of distance, we also observe that correlation between nearby 
points can reasonably be modeled as a linear function of distance. Figure 13(b) shows 
the measured correlation between blocks at two different phases in the triangular system 
solution example of Section 4. Again we see locally decreasing correlation as a function of 
distance (between blocks), but should be aware that the sizes of the sample sets defining 
each autocorrelation value are quite small. 

Our intuition and measurements lead us to the following model of correlation. We let 
a be some positive number less than two, and assume that the covariance between W t ( p )  
and Wt(q) is given by 

For the purpose of tractability we are assuming that correlation throughout the domain is 
a linear decreasing function of the distance. 

The execution time associated with doing all the work in a subinterval [a, b] at time t 
is 

w, b, t )  = lb W ( P )  dP. 

T(a,  b, t )  has mean value ( b  - a ) p ( t ) .  The variance of T ( a ,  b,  t )  is derived by noting first 
that 

var[T(a ,  b,  t)l = E[(%, b, t )  - ( b  - a>P(t)>21 
= E[F(a ,  b, q2] 

where p(u, b, t )  is the integral from a to b of 6' t (p)  = Wt(p) - p ( t ) ,  a stochastic process 
with mean 0 and identical covariance structure as Wt(p).  The variance of the workload 
interval is given by 
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J a  J a  

= 2 ( t ) ( b  - a)2(1 - f f ( b  - a ) / 3 ) .  

Following a uniform aggregation of the domain points into n work units, the ith work 
unit is the integral T(i /n , ( i  + l ) / n , t ) ,  and is denoted as c;. The random vector of 
work units is denoted C =< co, . . . , c,+l >. We are interested in the covariance matrix a$ 
for the work units. Using an approach similar to the one outlined above, we find that the 
covariance between units i and j is 

2 cr2 (t> Cov[c;, cj] = (ac)ii = -(n - ali - jl). 
n3 

Similarly, the variance of work unit i is given by 

var[c;] = (u;);; = u2(t) -(n - 0/3). 
n3 

At this point it is worthwhile to relate our analytic model to the three model problems. 
The length of a work unit, l /n,  directly models the extent of aggregation. The value of c; 
models the execution time of entities such as (i) subintervals in fluids problem domain, (ii) 
an aggregated work unit in the triangular solve problem, (iii) a sequence of hexes along 
the battle-line in the battlefield simulation problem. The randomness of c; models the 
uncertainty in execution time of each of these entities; the distance dependent decreasing 
correlation between c; and cj models the locality of workload intensity we have noted in 
each of the model problems. With these ideas in place we turn to the problem of effectively 
mapping the work units onto processors. 

For simplicity we assume that the number of processors, P, divides n evenly. A conve- 
nient way to describe an assignment of work units to processors is by a P x n ass ignment  
matrix whose i j  - th entry is 1 if work unit cj is assigned to processor i, and is 0 otherwise, 
Given assignment matrix d, the multiplication AC yields a P x 1 random vector whose 
j t h  component is the sum of the execution times of all work units assigned to processor j. 
The vector of mean processor loads is the matrix-vector product d [ p ( t ) / n ] ,  where [ p ( t ) / n ]  
is the vector of C's means. The covariance matrix of AC is the product du:dT, where 
AT is the transpose of A. 

Under the assumption that all work during one phase must be completed before any 
work in the next phase is begun, the phase execution time (ignoring any communication 
overhead) is the maximum processor execution time, or max{(dC)T}; a random quantity 
since C is a random vector. We are interested in finding an assignment matrix which 
minimizes the execution time in some sense. It is natural then to look for the assignment 
which minimizes the expected value of max{ ( dC)T}. 

2cj's dependence on time t is dropped here for notational convenience. 
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6.2 Correlation and Load Balance 
We will restrict our attention to balanced assignments that assign an equal number of 
work units to each processor. There are extreme conditions when a balanced assignment 
will not minimize E[ma~{(dC)~}] ;  for example, if Wt(p) is Gaussian with c ( t ) / p ( t )  large 
and p( t )  close to zero, it may be optimal to put all work in one processor. However, these 
conditions also require an interpretation of negative work, which has no meaning here. 
We will avoid these problems by simply assuming that a ( t ) / p ( t )  is small, and that p(t )  
is large. There are many balanced assignments; in our assumed framework, two balanced 
assignments need not have identical expected maximum processor finishing times. 

The correlation between processor workloads under a balanced assignment has a strong 
impact on E[ma~((dC)~}] .  One extreme case is when the correlation is exactly 1, so that 
every processor has exactly the same execution time. In this case the expected maximum 
processor execution time is identical to the mean processor execution time. A moment of 
reflection reveals that the expected maximum can get no smaller. At the other extreme 
consider two processors whose loads have a correlation coefficient of -1. Whenever one 
processor's load is r above the mean load, the other's is r below the mean load. The 
expected maximum between the two is large, since one of the loads is guareenteed to 
exceed the mean. It is clear then that maximized correlation between workloads is good, 
in that it reduces the idle time of processors waiting for the most heavily loaded processor 
to finish the phase. We should therefore attempt to find the assignment matrix that in 
some sense maximizes inter-processor covariance. It follows from the definition of the 
processor load covariance matrix that the sum of all matrix entries is equal to the sum of 
all work unit covariance matrix entries; 

P-1 P-1 n-1 n-1 

This relationship holds independently of the assignment matrix A. Thus, to maximize 
the sum of inter-processor covariance terms we need only minimize the sum of processor 
variances. We are able to show that a wrapped assignment of the n work units mini- 
mizes the sum of processor variances, and so can be expected to achieve a small value of 
E [  Inax{ (AC)*}] .  

6.3 Minimizing Sum of Processor Variances 
To show bhat a wrapped assignment minimizes the sum of processor load variances we 
demonstrate a procedure that takes any assignment and constructs another whose sum of 
processor load variances is no larger. The repeated application of this procedure produces 
a wrapped assignment. 

Let dl be any assignment matrix describing a balanced assignment. Without loss of 
generality, we assume that under dl the processors are numbered so that Po is assigned 
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co, Pl is assigned the smallest indexed c; that is not assigned to Po, and in general Pj is 
assigned the smallest indexed ck that is not assigned to any of Po, Pl, . . . , Pj-l. The labels 
Pj will be used to both identify a processor, and the workload assigned to that processor. 

We will say that cj is in place if cj is assigned to processor Pj mod p. Note that all work 
units are in place under a wrapped assignment. We construct another balanced assignment 
d2 by finding the smallest indexed ci that is not in place, and by putting it in place. Let 
c j  denote this unit, let Ps denote the source processor which has c j  under dl, and let PT 
denote the target processor Pf mod p. Let cg be the smallest indexed work unit assigned 
to PT such that g > f .  d2 is constructed from dl by giving cf to PT, and cg to Ps. We 
will prove that the sum of processor variances under d2 bounds that sum under dl from 
below. 

For any processor Pi, let d(i) denote the set of work units assigned to it under A. By 
definition the variance of Pi's work load is given by 

~ u r [ P ; ]  = (doid') I t  ,. = vur[c j]  + c C O V [ C j ,  C k ] .  (4) 
cJEA(i) <cJ ,ck>EA( i )  X A( i )  

The sum of work unit variances depends only on the number of units assigned to Pi. The 
second component of the expression above is a sum of unit covariance terms ( u c  terms), 
that depends on the assignment chosen. Similarly, the covariance between processors Pi 
and Pj is given by a sum of uc  terms: 

c 

It is clear from (4) that the variance of any processor other than Ps or PT is by 
unaffected by swapping c j  and cg. To prove the desired result we need only show that the 
swap does not increase ~ u r [ P s ]  + v u r [ P ~ ] .  The change in processor variances caused by the 
swap is entirely due to changes in the sum of uc terms in each processor. After swapping 
c j  and cg, each work unit c; assigned to Ps loses the uc term Cov[cj ,  c;]  and gains the term 
Coo[c,,ci].  We let A L ~  denote the sum of all such changes among work units in Ps less 
than (or to the left of) f ,  and let Ls denote the number of such work units. Similarly A R ~  
denotes the sum of changes among work units in Ps greater than (or to the right of) g 
and Rs denotes the number of such units;  AM^ denotes the sum of changes among units 
in Ps with indices between f and g. Expressions for these quantities are derived using 
equation 1: 
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a2(t) A R ~  = C ( C O V [ C ~ ,  c j ]  - C O V [ C g ,  ~ j ] )  = --(g - f ) R ~ a .  
n3 

c ~ E A o ( T )  
j > g  

No term analogous to  AM^ is necessary since there are no work units in PT with indices 
between f and g. 

The change in the s u m  of Ps’s variance with PT’S variance is given by the sum’of all the 
A terms defined above. We will show that the sum of A terms is bounded from above by 
0. At this point a number of observations are useful. Since all c; with i < f are in order, it 
follows that LT 5 Ls. Thus A L , + A L ~  5 0. It remains to show that A R ~ + A R ~ + A M ~  5 0. 
We know that 

furthermore, since n / P  = L T  + RT, we must also have Rs 5 RT. We proceed to show that 
the magnitude of  AM^ is no greater than the magnitude of (6) and consequently prove the 
larger result. 

rn = n / P  - Ls - Rs is the number of work units in PS whose indices lie strictly between 
f and g. AMs is maximized when the indices of these units are as large as possible; when 
k = g -- 1, g - 2,. . . , g - rn. With such indices, the sum of cg’s uc terms in Ps is 

2 ( t )  -C(n -3 - i - a ) .  
;=I 

Likewise, the sum of c j ’s  uc terms in Ps is 

a2(t) -E(. - (g - f - ;)a). 
n3 ;=I 

From this, we see that  AM^ when maximized can be written as 
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But note that 

so that 

a2W A R , + A R , + A M ,  = ~ ( - ( R ~ - R s ) ( g - f ) a + m - ( g - f ) a )  IO. 
Consequently, swapping cf  and cg does not increase vur[Ps] + v u r [ P ~ ] .  Furthermore, the 
swap does not affect the sum of other processors’ variances. Repeatedly applying this 
procedure leads to the assignment where every work unit is in place, an assignment we will 
call the perfect assignment. This discussion has proved the following theorem. 

Theorem 1 Let  P and n be given such that P divides n evenly, and let A p  be the perfect 
P x n assignment matrix.  T h e n  for any  P x n assignment matrix  A, 

i=O i=O 

0 

Theorem 6.1 is powerful in its generality. One of its immediate implications is that 
among balanced workload assignments which also balance processor variances, the perfect 
assignment minimizes that common processor variance. We have offered heuristic reasons 
explaining why minimizing processor variance should keep the expected load of the busiest 
processor low. But so far, the link between low processor variance and good load balance 
rests just on heuristic reasoning. In at least one special case it is possible to show that 
a perfect assignment produces the stochastically optimal load balance. The conditions 
leading to this result are that the workload intensities W&) form a Gaussian stochastic 
process [13] and that the number of processors is two. Then it is straightforward to show 
that for any n, the vector of n work units C has a jointly normal distribution (see [13] for a 
definition of joint normality) and that under any  assignment, the two processors’ workloads 
are jointly normal. The following lemma concerning bivariate normal distributions can be 
proven using first principles in probability. 

Lemma 2 Let  random variables PI and P2 be jointly normal  with m e a n  vector 

covariance matr ix  [ $ i;]. T h e n  
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Since relation (3) is independent of the assignment and wrapping minimizes the sum of 
processor variances, it follows from Lemma 6.1.1 that in at least one case, wrapping opti- 
mally balances the load (at least among balanced assignments). It is not clear at this time 
whether this result extends to general numbers of processors. But, Theorem 6.1 does offer 
a strong theoretical reason for choosing the wrapping paradigm. 

? 

6.4 Aggregation and Load Balance 
If we accept the supposition that minimizing processor variance reduces phase execution 
time, then our results imply that we should aggregate as little as possible for the best 
balance of load. This is in complete agreement with intuition, and is further illustrated 
by example. Suppose that the finest possible granularity leads to n work units. A coarser 
granularity with n / 2  work units is achieved by combining the leftmost two work units into 
one, the next two work units into one, and so on. In our analytic model any assignment A 
of the doubled-units is statistically identical with that assignment of the fine work units 
which assigns the first twolunits to the processor holding the first doubled-unit, the third 
and fourth units to the processor holding the second doubled-unit, etc. Our results say 
that any assignment of the doubled-units is inferior to the wrapped assignment ofithe finest 
grained units. Consequently, to achieve the best load balance (using wrapping) we should 
aggregate as little as possible. 

This conclusion is borne out by measurements made on the battlefield simulation. 
Zipscreen conveniently lends itself to measuring load balance (largely) in isolation, as each 
time step is composed of a computational period (the perception and combat activities), 
followed by a communication period (movement and exchange of relevant block boundary 
information). Our metric is the average processor utilization during the computational 
period, taken to be the average time spent doing computation, divided by the time spent 
by the last processor to finish that period. Figure 14 plots average efficiency as a function 
of work unit size. The measurements are averaged over a large set of computational 
periods. As expected, low degrees of aggregation produce better efficiencies. In fact, the 
performance due to load balancing is somewhat better than represented for low degrees of 
aggregation as these measurements still include a certain amount of additional overhead. 

6.5 Covariance Structure Under Wrapping 
It is important to remember that our analytic results have only concerned the effects of load 
balancing on performance-we have ignored the additional overhead of communication 
and synchronization. If decreasing the size of work units improves load balance while 
increasing overhead, we would like to know how much aggregation can be tolerated and 
still achieve reasonable balances of load. The analysis in this section helps to clarify 
this issue by studying the behavior of processor variance/covariance under wrapping, as 
we aggregate less and less. We then link our results about variance/covariance to the 
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Figure 14: Computational Efficiency as Function of Aggregation 

special case described by Lemma 6.1.1, and see there that load balance improves linearly 
in the number of work units. We then observe somewhat better response to decreasing 
aggregation in our battlefield simulation problem. 

The covariance matrix for a set of random variables that are perfectly correlated has 
identical entries in every matrix position. Optimal performance is achieved if the proces- 
sors' loads are perfectly correlated (although this is impossible under our analytic model). 
The analysis to follow shows what the single limiting matrix value would be for perfectly 
correlated loads, and that as the number of work units n increases, the difference between 
an arbitrary covariance matrix entry and the limiting value decreases as a function of n2. 

Every processor has the same variance in a perfect assignment; as seen before, this 
variance has two components. The sum of work unit variances is just 

We now consider the sum of uc terms which also contribute to the processor variance. 
Under a perfect assignment, when c, and Ck are assigned to the same processor, then 

."t) 
cov[ck,  c,] = -(n - j P a )  n3 

where j = Ik: - ml/P, which is an integer. Within a processor, the work unit with the kth 
largest index ( b  = 1,. . . , n / P )  has uc terms with k - 1 other work units having smaller 
indices. Likewise, it has uc terms with n / P  - b work units having larger indices. For fixed 
I C ,  the sum of these two groups is 

32 



We are interested in the sum of all such groups, found by straightforward algebra: 

an3 n2 

k= 1 

A processor’s complete variance is found by adding this quantity to the sum given by 
equation (7) 

Var[Pi] = o‘o ( - ( 1 -  n3 4 3 )  + Y(l- 1 / P ) )  n3 P2 

= O2(t )  (-(1 1 - 4 3 )  + g ( 1  CY - 1 / P ) )  * P2 

We can determine Cov[Pi, Pj] under a perfect assignment in an entirely similar fashion. 
Without loss of generality we suppose that i < j. The work unit in Pi with the kth largest 
index has k - 1 uc terms with work units in Pj having smaller indices. The sum of all 

Similarly, it has n / P  - k + 1 uc terms with work units in P; having larger indices. The 
s u m  of these terms is 

Accumulating these two sums over k = 1 to k = n / P  it is straightforward to derive 

an3 a n  n ( j - i ) a  
3P2 3 P 

COV[Pi, Pi] = y (g - - + - - 

From equations (8) and (9) we see that as n gets large, the covariance matrix entries 
all approach the value ( a 2 ( t ) / P 2 ) ( 1  - a/3).  This is to be expected; as n increases, the 
“distance” between two processors’ work units becomes smaller and smaller, so that the 
correlation between their work units becomes higher. Furthermore, the convergence to- 
wards shtistical identity is fairly rapid, as the diminishing terms in (8) and (9) decrease 
in n2. 

Figure 14 shows that load balancing tends to degrade slowly as the degree of aggre- 
gation increases. Most of the gain achievable by low degrees of aggregation are obtained 
with significant aggregation, and hence lower overhead. Accepting our analytic model’s 
description of processor load variance, this means that the quadratic convergence of co- 
v;xiance towards statistical identity is coupled with a super-linear convergence of average 
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processor utilization towards its optimal value. Less impressive results are derivable from 
Lemma 6.1.1. The value T is processor covariance, predicted by our model to approach its 
maximum as a square function of the number of work units. Lemma 6.1.1 implies that the 
expected maximum then declines as a linear function of the number of work units, as T 

appears within a radical. The symbolic optimal execution times depicted in Figures 9 and 
10 decrease roughly linearly as the number of work units increases; note however that those 
calculations relate to an entire computation, not just one phase. While these observations 
shed some light on the relationships between degree of aggregation, processor variance, 
and load balance, it is important to bear in mind that such relationships are likely to be 
problem dependent. 

6.6 The Role of Time 
The derivations in previous subsections explicitly denoted the dependence of the expected 
phase finishing time E [ m a ~ ( ( d p C ) ~ } ]  on “time”, or phase number. Theorem 6.1 concerns 
only one phase, and typically we are concerned with finding a single assignment for many 
phases. However, if the degree of aggregation is chosen before running the computation, 
then our results say that the processor variance ut every phase is minimized by wrapping. 
This does not necessarily mean that the variance of the sum of a processor’s phase execu- 
tion times is minimized, although this would be true if the phases were probabilistically 
independent. Our analytic model might be extended to treat workload correlation in t ime ,  
and could potentially give further insights into the properties of a wrapped assignment 
over the entire computation, not just one phase. 

7 Summary 
A large class of computations exhibit a high degree of fine-grained parallelism, but have ex- 
ecution requirements that are either unpredictable, or (because of the fine-grained nature 
of the problem) are too costly to pre-analyze. The parallelism inherent in these problems 
suggests that parallel processing can be used, but the uncertainity in the workload makes 
mapping that workload onto medium-scale multiprocessors a difficult problem. This paper 
advocates simple principles for aggregating and mapping workload under these conditions. 
The aggregation is defined by a small number of parameters. These parameters effectively 
control the trade-offs between the good load balance achieved by little aggregation, and 
the low communication/synchronization costs achieved by extensive aggregation. We illus- 
trated these principles and trade-offs using three real-life model problems, implemented on 
different multiprocessors. The performance observed shows that aggregation and wrapping 
is a viable method for mapping workload onto multiprocessors; dynamic problems of the 
sort studied here are generally recognized as being difficult to map. We also developed an 
analytic model which explains in part the inter-relationship between aggregation and load 
balance, and which shows that the mapping algorithm we study minimizes the variance in 
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processors’ loads. Conclusions drawn from the model are shown to be in agreement with 
observations from our model problems. 

Perhaps the most important question we have left unanswered is how one chooses the 
aggregation parameters. When the computation’s behavior and costs at every step are 
completely known, then it may be possible to optimally pre-schedule aggregation changes 
[19]. We are currently considering schemes that attempt to dynamically estimate and 
adjust granularity, and will address this important issue in a subsequent paper. 
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